
Professor in the Thomas Lord Department of Mechanical Engineering and Materials Science
My research laboratory uses physics-based computational tools to provide fundamental, molecular-level understanding of a diverse range of biological and soft-material systems, with the aim of discovering new phenomena and developing new technologies. The methods we use or develop are largely based on statistical mechanics, molecular modeling and simulations, stochastic dynamics, coarse-graining, bioinformatics, machine learning, and polymer/colloidal physics. Our current research interests fall within four main themes: genome organization and regulation; polymer-nanoparticle composites; viral-DNA-packaging; and DNA nanotechnology. Please visit our website for more details about each of these research projects.
Appointments and Affiliations
- Professor in the Thomas Lord Department of Mechanical Engineering and Materials Science
- Professor of Chemistry
Contact Information
- Office Location: 144 Hudson Hall, Box 90300, Duke University, Durham, NC 27708
- Office Phone: (919) 660-5435
- Email Address: gaurav.arya@duke.edu
- Websites:
Education
- B.Tech. Indian Institute of Technology (India), 1998
- Ph.D. University of Notre Dame, 2003
- Princeton University, 2005
- New York University, 2007
Research Interests
Molecular modeling, molecular simulations, statistical mechanics, coarse-graining, machine learning, polymer and colloidal physics, polymer-nanoparticle composites, chromatin biophysics, DNA nanotechnology, viral DNA packaging, single-molecule force spectroscopy, nanoscale transport
Courses Taught
- BME 493: Projects in Biomedical Engineering (GE)
- BME 494: Projects in Biomedical Engineering (GE)
- BME 791: Graduate Independent Study
- COMPSCI 583: Applications in Data and Materials Science
- EGR 201L: Mechanics of Solids
- ME 419: Molecular Modeling of Soft Matter
- ME 490: Special Topics in Mechanical Engineering
- ME 555: Advanced Topics in Mechanical Engineering
- ME 560S: Materials Science and Engineering Seminar
- ME 582: Applications in Data and Materials Science
- MSEG 591: Independent Study
In the News
- Researchers Reveal the Inner Workings of a Viral DNA-Packaging Motor (Jun 4, 20…
- Researchers Reveal the Inner Workings of a Viral DNA-Packaging Motor (Jun 3, 20…
- Soft Robotic Dragonfly Signals Environmental Disruptions (Mar 25, 2021 | Pratt …
- Writing New Recipes for High-Performance Materials (Feb 26, 2021 | Pratt School…
- Predicting Forces between Oddly Shaped Nanoparticles (Nov 19, 2020 | Pratt Scho…
- Filling an AI and Materials Science Training Gap (Sep 21, 2020)
- DNA-Based Nanobots Earn Duke MEMS Its Fifth DMREF Award for Materials Science (…
- Layered Liquids Arrange Nanoparticles into Useful Configurations (Mar 26, 2019 …
- Gaurav Arya: Modeling Soft Matter with Hard Calculations (Nov 17, 2016)