Gaurav Arya


Associate Professor of Mechanical Engineering and Materials Science

My research laboratory uses physics-based computational tools to provide fundamental, molecular-level understanding of a diverse range of biological and soft-material systems, with the aim of discovering new phenomena and developing new technologies. The methods we use or develop are largely based on statistical mechanics, molecular modeling and simulations, stochastic dynamics, coarse-graining, bioinformatics, machine learning, and polymer/colloidal physics. Our current research interests fall within four main themes: genome organization and regulation; polymer-nanoparticle composites; viral-DNA-packaging; and DNA nanotechnology. Please visit our website for more details about each of these research projects.

Appointments and Affiliations

  • Associate Professor of Mechanical Engineering and Materials Science
  • Associate Professor of Biomedical Engineering
  • Associate Professor of Chemistry

Contact Information

  • Office Location: 144 Hudson Hall, Box 90300, Duke University, Durham, NC 27708
  • Office Phone: (919) 660-5435
  • Email Address:
  • Websites:


  • New York University, 2007
  • Princeton University, 2005
  • Ph.D. University of Notre Dame, 2003
  • B.Tech. Indian Institute of Technology (India), 1998

Research Interests

Molecular modeling, molecular simulations, statistical mechanics, coarse-graining, machine learning, polymer and colloidal physics, polymer-nanoparticle composites, chromatin biophysics, DNA nanotechnology, viral DNA packaging, single-molecule force spectroscopy, nanoscale transport

Courses Taught

  • EGR 201L: Mechanics of Solids
  • ME 490: Special Topics in Mechanical Engineering
  • ME 555: Advanced Topics in Mechanical Engineering

In the News

Representative Publications

  • Tang, T-Y; Zhou, Y; Arya, G, Interfacial Assembly of Tunable Anisotropic Nanoparticle Architectures., Acs Nano, vol 13 no. 4 (2019), pp. 4111-4123 [10.1021/acsnano.8b08733] [abs].
  • Shi, Z; Castro, CE; Arya, G, Conformational Dynamics of Mechanically Compliant DNA Nanostructures from Coarse-Grained Molecular Dynamics Simulations., Acs Nano, vol 11 no. 5 (2017), pp. 4617-4630 [10.1021/acsnano.7b00242] [abs].
  • Root, SE; Jackson, NE; Savagatrup, S; Arya, G; Lipomi, DJ, Modelling the morphology and thermomechanical behaviour of low-bandgap conjugated polymers and bulk heterojunction films, Energy Environ. Sci., vol 10 no. 2 (2017), pp. 558-569 [10.1039/c6ee03456j] [abs].
  • Arya, G, Models for recovering the energy landscape of conformational transitions from single-molecule pulling experiments, Molecular Simulation, vol 42 no. 13 (2016), pp. 1102-1115 [10.1080/08927022.2015.1123257] [abs].
  • Murthy, CR; Gao, B; Tao, AR; Arya, G, Dynamics of nanoparticle assembly from disjointed images of nanoparticle-polymer composites, Physical Review. E, vol 93 no. 2 (2016) [10.1103/PhysRevE.93.022501] [abs].
  • Meluzzi, D; Arya, G, Quantification of DNA cleavage specificity in Hi-C experiments., Nucleic Acids Res, vol 44 no. 1 (2016) [10.1093/nar/gkv820] [abs].